There is an integer array which has the following features:
The numbers in adjacent positions are different.
A[0] < A[1] && A[A.length - 2] > A[A.length - 1].
We define a position P is a peek if:
A[P] > A[P-1] && A[P] > A[P+1]
Find a peak element in this array. Return the index of the peak.
Notice
The array may contains multiple peeks, find any of them.
Example
Given [1, 2, 1, 3, 4, 5, 7, 6]
Return index 1 (which is number 2) or 6 (which is number 7)
Challenge
Time complexity O(logN)
思路
这道题的题意告诉我们,一定有peak。因为一开始是升序的,最后是降序的。
那么我们在任何一点进行判断,如果这个点的值比左边大,那边这个点右边一定有peak。反之,这个点左边一定有peak。
我们用二分法来做。
Code
class Solution { /** * @param A: An integers array. * @return: return any of peek positions. */ public int findPeak(int[] A) { // write your code here if (A == null || A.length == 0) { return -1; } int start = 0; int end = A.length - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (A[mid - 1] < A[mid]) { start = mid; } else { end = mid; } } return A[start] > A[end] ? start : end; } }