Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.
The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.
The node has an extra attribute parent which point to the father of itself. The root's parent is null.
Example
For the following binary tree:
4
/ \
3 7
/ \
5 6
LCA(3, 5) = 4
LCA(5, 6) = 7
LCA(6, 7) = 7
思路
A和B往上总会在一个地方相交,这个地方就LCA。
如果A和B不在同一个高度上,我们可以把一个点往上沿着parent指针跳到和另一个相同高度的位置。
两个相同高度的点同时沿着各自的parent往上爬,爬到相交的地方就是LCA了。
Code
/** * Definition of ParentTreeNode: * * class ParentTreeNode { * public ParentTreeNode parent, left, right; * } */ public class Solution { /** * @param root: The root of the tree * @param A, B: Two node in the tree * @return: The lowest common ancestor of A and B */ public ParentTreeNode lowestCommonAncestorII(ParentTreeNode root, ParentTreeNode A, ParentTreeNode B) { // Write your code here if (A == root || B == root) { return root; } int depthA = getDepth(A); int depthB = getDepth(B); if (depthB > depthA) { ParentTreeNode tmp = B; B = A; A = tmp; } int diff = Math.abs(depthA - depthB); while (diff-- > 0) { A = A.parent; } while(A != B) { A = A.parent; B = B.parent; } return A; } public int getDepth(ParentTreeNode node) { int depth = 0; while (node.parent != null) { depth++; node = node.parent; } return depth; } }