Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Notice
m and n will be at most 100.
Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
思路
和Unique Path一样的做法。
初始化:
从始发点开始往下,往右。把unique路径数设为1。
如果碰到障碍,障碍位置以及之后位置的unique path数都设成0。
遍历matrix,当前位置的unique path是当前位置上面和左边的unique path之和。如果碰到障碍,障碍位置的unique path为0。
Code
public class Solution { /** * @param obstacleGrid: A list of lists of integers * @return: An integer */ public int uniquePathsWithObstacles(int[][] obstacleGrid) { // write your code here int m = obstacleGrid.length; int n = obstacleGrid[0].length; int[][] f = new int[m][n]; for (int i = 0; i < m; i++) { if (obstacleGrid[i][0] == 1) { break; } f[i][0] = 1; } for (int j = 0; j < n; j++) { if (obstacleGrid[0][j] == 1) { break; } f[0][j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] == 1) { f[i][j] = 0; } else { f[i][j] = f[i - 1][j] + f[i][j - 1]; } } } return f[m - 1][n - 1]; } }