Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Notice
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
Example
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
思路
先排序,然后遍历数组,对于每一个元素,求这个数负值的twoSum。
要注意数组重复的数的处理。
Code
public class Solution { /** * @param numbers : Give an array numbers of n integer * @return : Find all unique triplets in the array which gives the sum of zero. */ public ArrayList<ArrayList<Integer>> threeSum(int[] numbers) { // write your code here ArrayList<ArrayList<Integer>> results = new ArrayList<>(); if (numbers == null || numbers.length < 3) { return results; } Arrays.sort(numbers); for (int i = 0; i < numbers.length - 2; i++) { if (i > 0 && numbers[i] == numbers[i - 1]) { continue; } int target = -numbers[i]; int left = i + 1; int right = numbers.length - 1; twoSum(numbers, left, right, target, results); } return results; } public void twoSum(int[] nums, int left, int right, int target, ArrayList<ArrayList<Integer>> results) { while (left < right) { if (nums[left] + nums[right] == target) { ArrayList<Integer> tuple = new ArrayList<>(); tuple.add(-target); tuple.add(nums[left]); tuple.add(nums[right]); results.add(tuple); left++; right--; while (left < right && nums[left] == nums[left - 1]) { left++; } while (right > left && nums[right] == nums[right + 1]) { right--; } } else if (nums[left] + nums[right] > target) { right--; } else { left++; } } } }