Implement the following operations of a stack using queues.
- push(x) -- Push element x onto stack.
- pop() -- Removes the element on top of the stack.
- top() -- Get the top element.
- empty() -- Return whether the stack is empty.
- You must use only standard operations of a queue -- which means only
push to back
,peek/pop from front
,size
, andis empty
operations are valid. - Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
- You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).
Solution:
We need only one queue to simulate the stack.
The idea is after a push, the most recent element is at the end of the queue. And we rotate all the previous elements to its back.
Code:
public class MyStack { private Queue<Integer> queue; /** Initialize your data structure here. */ public MyStack() { queue = new LinkedList<>(); } /** Push element x onto stack. */ public void push(int x) { queue.offer(x); for (int i = 0; i < queue.size() - 1; i++) { queue.offer(queue.poll()); } } /** Removes the element on top of the stack and returns that element. */ public int pop() { return queue.poll(); } /** Get the top element. */ public int top() { return queue.peek(); } /** Returns whether the stack is empty. */ public boolean empty() { return queue.isEmpty(); } } /** * Your MyStack object will be instantiated and called as such: * MyStack obj = new MyStack(); * obj.push(x); * int param_2 = obj.pop(); * int param_3 = obj.top(); * boolean param_4 = obj.empty(); */