Given
n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given
n = 5
and edges = [[0, 1], [0, 2], [0, 3], [1, 4]]
, return true
.
Given
n = 5
and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]
, return false
.
Note: you can assume that no duplicate edges will appear in
edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.Solution:
Method 1: BFS
If a graph is a valid tree, it satisfies:
1. If and only if the number of edges equals n - 1.
2. All n vertices are connected.
We use BFS to traverse the graph and store all reached vertices to a HashSet.
After traversing, we check if the size of HashSet is n.
Code:
public class Solution { public boolean validTree(int n, int[][] edges) { if (n == 0) { return false; } if (edges.length != n - 1) { return false; } ArrayList<Integer>[] adj = new ArrayList[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<Integer>(); } for (int[] edge : edges) { adj[edge[0]].add(edge[1]); adj[edge[1]].add(edge[0]); } HashSet<Integer> set = new HashSet<>(); Queue<Integer> queue = new LinkedList<>(); queue.offer(0); set.add(0); while (!queue.isEmpty()) { int v = queue.poll(); for (int neighbor : adj[v]) { if (!set.contains(neighbor)) { set.add(neighbor); queue.offer(neighbor); } } } return set.size() == n; } }
Method 2: Union Find
Code: