Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0. A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
Solution:
Same with 3Sum.
Just having one more loop.
Code:
public class Solution { public List<List<Integer>> fourSum(int[] nums, int target) { List<List<Integer>> result = new ArrayList<>(); if (nums == null || nums.length == 0) { return result; } Arrays.sort(nums); for (int i = 0; i < nums.length; i++) { if (i != 0 && nums[i] == nums[i - 1]) { continue; } for (int j = i + 1; j < nums.length; j++) { if (j != i + 1 && nums[j] == nums[j - 1]) { continue; } int lo = j + 1; int hi = nums.length - 1; while (lo < hi) { if (nums[lo] + nums[hi] + nums[i] + nums[j] == target ) { List<Integer> list = new ArrayList<>(); list.add(nums[i]); list.add(nums[j]); list.add(nums[lo]); list.add(nums[hi]); result.add(list); lo++; hi--; while (lo < hi && nums[lo] == nums[lo - 1]) { lo++; } while (lo < hi && nums[hi] == nums[hi + 1]) { hi--; } } else if (nums[lo] + nums[hi] + nums[i] + nums[j] < target) { lo++; } else { hi--; } } } } return result; } }