Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
[2, 3, 6, 7]
and target 7
, A solution set is:
[ [7], [2, 2, 3] ]
Solution:
Use DFS to traverse all combinations and check if the sum is target.
To remove duplicates, we first sort the array.
In the DFS function, when we find a number equals to its previous one but the previous one has not been selected, we cannot select this number.
Code:
public class Solution { public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<>(); if (candidates == null || candidates.length == 0) { return result; } Arrays.sort(candidates); helper(candidates, target, result, new ArrayList<Integer>(), 0); return result; } public void helper(int[] nums, int target, List<List<Integer>> result, List<Integer> list, int pos) { if (target == 0) { result.add(new ArrayList<Integer>(list)); return; } if (target < 0) { return; } for (int i = pos; i < nums.length; i++) { if (i != pos && nums[i] == nums[i - 1]) { continue; } list.add(nums[i]); helper(nums, target - nums[i], result, list, i); list.remove(list.size() - 1); } } }