Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.
Example:
Input: The root of a Binary Search Tree like this: 5 / \ 2 13 Output: The root of a Greater Tree like this: 18 / \ 20 13
Solution:
Method 1: Recursive
The in-order traversal of BST is in ascending order.
If we reverse the in-order traversal with right-root-left order, the result will be in depending order.
Therefore, we can use a reversed in-order traversal, and update each node's value by adding its previous node's value.
Code:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int sum = 0; public TreeNode convertBST(TreeNode root) { if (root == null) { return null; } convertBST(root.right); sum += root.val; root.val = sum; convertBST(root.left); return root; } }
Method 2: Iterative
Code:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode convertBST(TreeNode root) { if (root == null) { return null; } Stack<TreeNode> stack = new Stack<>(); int sum = 0; TreeNode curr = root; while (curr != null || !stack.isEmpty()) { while (curr != null) { stack.push(curr); curr = curr.right; } curr = stack.pop(); sum += curr.val; curr.val = sum; curr = curr.left; } return root; } }