Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target =
3
, return true
.Solution:
This is a binary search problem.
We map the two dimensional coordinates to one dimensional number.
Thus, the time complexity can be optimized to O(log(mn)).
Code:
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix.length == 0) { return false; } if (matrix[0] == null || matrix[0].length == 0) { return false; } int m = matrix.length; int n = matrix[0].length; int start = 0; int end = m * n - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (matrix[mid / n][mid % n] <= target) { start = mid; } else { end = mid; } } if (matrix[end / n][end % n] == target) { return true; } if (matrix[start / n][start % n] == target) { return true; } return false; } }