Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array
the subarray
[2,3,1,2,4,3]
and s = 7
,the subarray
[4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Solution:
Suppose we know the prefixSum of each index i.
At any index i, we check if it is >= target. If so, we decrease its range from the left side, and check if it still satisfy the condition.
We can do this in O(n) time and without using extra space.
Code:
public class Solution { public int minSubArrayLen(int s, int[] nums) { if (nums == null || nums.length == 0) { return 0; } int sum = 0; int min = Integer.MAX_VALUE; int i = 0; int j = 0; while (j < nums.length) { sum += nums[j++]; while (sum >= s) { min = Math.min(min, j - i); sum -= nums[i++]; } } return min == Integer.MAX_VALUE ? 0 : min; } }