Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If there isn't one, return 0 instead.
Note:
The sum of the entire nums array is guaranteed to fit within the 32-bit signed integer range.
The sum of the entire nums array is guaranteed to fit within the 32-bit signed integer range.
Example 1:
Given nums =
return
[1, -1, 5, -2, 3]
, k = 3
,return
4
. (because the subarray [1, -1, 5, -2]
sums to 3 and is the longest)
Example 2:
Given nums =
return
[-2, -1, 2, 1]
, k = 1
,return
2
. (because the subarray [-1, 2]
sums to 1 and is the longest)
Follow Up:
Can you do it in O(n) time?
Can you do it in O(n) time?
Solution:
This is a range sum question. Whenever we see similar problem, we shall try prefixSum.
prefixSum[i] is the sum from 0 to i.
So prefixSum[j] - prefixSum[i - 1] is the range sum from i to j.
Now we go through the input array and calculate the prefixSum at index i.
At the same time, if we check and find a previous prefixSum with value prefixSum[i] - k in a HashMap, we know the range sum from map.get(prefixSum[i] - k) to i is k.
Therefore, we need O(n) time and O(n) space to solve the problem.
Code:
public class Solution { public int maxSubArrayLen(int[] nums, int k) { int sum = 0; HashMap<Integer, Integer> map = new HashMap<>(); map.put(0, -1); int maxLen = 0; for (int i = 0; i < nums.length; i++) { sum += nums[i]; if (map.containsKey(sum - k)) { maxLen = Math.max(maxLen, i - map.get(sum - k)); } if (!map.containsKey(sum)) { map.put(sum, i); } } return maxLen; } }